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1
METHOD FOR DEPOSITION OF
CONFORMAL FILMS WITH CATALYSIS
ASSISTED LOW TEMPERATURE CVD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/674,611, filed on Jul. 23, 2012. The entire
disclosure of the application referenced above is incorporated
herein by reference

FIELD

The present disclosure relates to chemical vapor deposi-
tion, and more specifically to deposition of conformal films
using chemical vapor deposition.

BACKGROUND

The background description provided herein is for the pur-
pose of generally presenting the context of the disclosure.
Work of the presently named inventors, to the extent it is
described in this background section, as well as aspects of the
description that may not otherwise qualify as prior art at the
time of filing, are neither expressly nor impliedly admitted as
prior art against the present disclosure.

Deposition of conformal films at lower temperatures is
currently performed using plasma-enhanced chemical vapor
deposition (PECVD)using costly, non-generic chemistry that
is not widely used in the semiconductor industry. Some depo-
sition techniques used to form conformal films, such as
atomic layer deposition (ALD), have complicated sequencing
with critical timing steps. As a result of these requirements,
yields tend to be lower and cost tends to be higher.

Typical silane (SiH,) based CVD starts to occur in a reactor
at~650° C. pedestal temperature, however the deposited film
is typically non-uniform. Decomposition of the SiH , alone by
pyroltic reaction forms amorphous silicon. Adding hydrogen
to the reaction results in hydrogenated amorphous silicon,
however the pedestal operating temperature still needs to be
above ~650° C. for deposition to occur.

SUMMARY

This section provides a general summary of the disclosure,
and is not acomprehensive disclosure of its full scope orall of
its features.

A substrate processing system for depositing a film
includes a processing chamber, a heater, and a controller. The
processing chamber includes a pedestal to support a substrate.
The heater is configured to heat the substrate to a temperature
within a predetermined temperature range. The controller is
configured to supply a gas mixture to the processing chamber
for a predetermined period, wherein the gas mixture includes
afirst precursor gas, ammonia gas and diborane gas, purge the
processing chamber after the predetermined period, and
repeat the supply and purging one or more times to deposit the
film.

A method for depositing a film in a substrate processing
system includes arranging a substrate on a pedestal in a pro-
cessing chamber, heating the substrate to a temperature
within a predetermined temperature range, and supplying a
gas mixture to the processing chamber for a predetermined
period to deposit the film on the substrate, wherein the gas
mixture includes a first precursor gas, ammonia gas and dibo-
rane gas.
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2

Further areas of applicability will become apparent from
the description provided herein. The description and specific
examples in this summary are intended for purposes of illus-
tration only and are not intended to limit the scope of the
present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood
from the detailed description and the accompanying draw-
ings, wherein:

FIGS. 1 and 2 are functional block diagrams of examples of
substrate processing systems and methods according to the
present disclosure;

FIG. 3 is a flowchart illustrating an example of method for
depositing a conformal film according to the present disclo-
sure;

FIG. 4 is atable illustrating various examples of flow ratios
according to the present disclosure; and

FIG. 5 is a graph illustrating examples of absorbance as a
function of wavenumber according to the present disclosure.

DETAILED DESCRIPTION

According to the present disclosure, substrate processing
systems and methods are disclosed for forming a conformal
film at relatively low temperatures. For example only, the
substrate processing systems and methods may employ
chemical vapor deposition (CVD) using basic nitride chem-
istry (for example, silane (SiH,) and ammonia (NH;) (in an
inert carrier gas)) with the addition of diborane B,H, which
acts as a catalyzer.

The substrate processing systems and methods described
herein involve decomposition by a catalytic and pyroltic reac-
tion, which enables a lower temperature boundary area that is
less than 630° C. For example only, deposition of the confor-
mal film may occur at pedestal temperatures at about 500° C.
or greater. In other words, the addition of the catalyzer B,H
to the process reaction allows the deposition temperature to
be significantly lowered to about ~500° C.

Referring now to FIG. 1, an example of a CVD reactor 100
includes a process chamber 124, which encloses other com-
ponents of the CVD reactor 100. Within the CVD reactor 100,
a pedestal 118 supports a substrate 116. A showerhead 120
delivers one or more precursors to the CVD reactor 100. The
pedestal 118 typically includes a chuck, a fork, or lift pins to
hold and transfer the substrate during deposition or other
treatment. The chuck may be an electrostatic chuck, a
mechanical chuck or other type of chuck.

The process gases are introduced via inlet 112. Multiple
source gas lines 110 are connected to a manifold 108. The
gases may be premixed or not. Appropriate valves and mass
flow controllers generally identified at 113 are employed to
ensure that the correct gases are delivered at predetermined
flow rates and mixtures during the deposition and other treat-
ment phases of the process.

Process gases exit the process chamber 124 via an outlet
122. A vacuum pump 126 (for example only, a one or two
stage mechanical dry pump and/or a turbo-molecular pump)
draws process gases out and maintains a suitable pressure
within the reactor using a controlled flow restriction device
128, such as a throttle valve or a pendulum valve.

It is possible to index the wafers after every deposition
and/or post-deposition treatment until all the required depo-
sitions and treatments are completed, or multiple depositions
and treatments can be conducted at a single station before
indexing the wafer.
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Referring now to FIG. 2, an example of a controller 200 for
controlling the system of FIG. 1 is shown. The controller 200
may include a processor, memory and one or more interfaces.
The controller 200 may be employed to control devices in the
system based in part on sensed values. In addition, the con-
troller 200 may be used to control heating and cooling of the
showerhead 120.

For example only, the controller 200 may control one or
more of valves 202, filter heaters 204, pumps 206, and other
devices 208 based on the sensed values and other control
parameters. The controller 200 receives the sensed values
from, for example only, pressure manometers 210, flow
meters 212, temperature sensors 214, and/or other sensors
216. The controller 200 may also be employed to control
process conditions during precursor delivery and deposition
of the film. The controller 200 will typically include one or
more memory devices and one or more processors.

The controller 200 may control the precursor delivery sys-
tem and deposition apparatus. The controller 200 executes
computer programs including sets of instructions for control-
ling process timing, delivery system temperature, pressure
differentials across the filters, valve positions, mixture of
gases, chamber pressure, chamber temperature, wafer tem-
perature, pedestal RF power levels, wafer chuck or pedestal
position, and other parameters of a particular process. The
controller 200 may also monitor the pressure differential and
automatically switch vapor precursor delivery from one or
more paths to one or more other paths. Other computer pro-
grams stored on memory devices associated with the control-
ler 200 may be employed in some embodiments.

Typically there will be a user interface associated with the
controller 200. The user interface may include a display 218
(e.g. a display screen and/or graphical software displays of
the apparatus and/or process conditions), and user input
devices 220 such as pointing devices, keyboards, touch
screens, microphones, etc. The controller parameters relate to
process conditions such as, for example, filter pressure dif-
ferentials, process gas composition and flow rates, tempera-
ture, pressure, and chamber wall temperature.

The system software may be designed or configured in
many different ways. For example, various chamber compo-
nent subroutines or control objects may be written to control
operation of the chamber components necessary to carry out
the deposition processes. Examples of programs or sections
of programs for this purpose include substrate positioning
code, process gas control code, pressure control code, and
heater control code.

A substrate positioning program may include program
code for controlling chamber components that are used to
load the substrate onto a pedestal or chuck and to control the
spacing between the substrate and other parts of the chamber
such as a gas inlet and/or target. A process gas control pro-
gram may include code for controlling gas composition and
flow rates and optionally for flowing gas into the chamber
prior to deposition in order to stabilize the pressure in the
chamber. A filter monitoring program includes code compar-
ing the measured differential(s) to predetermined value(s)
and/or code for switching paths. A pressure control program
may include code for controlling the pressure in the chamber
by regulating, e.g., athrottle valve in the exhaust system of the
chamber. A heater control program may include code for
controlling the current to heating units for heating compo-
nents in the precursor delivery system, the substrate and/or
other portions of the system. Alternatively, the heater control
program may control delivery of a heat transfer gas such as
helium to the wafer chuck.
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Examples of sensors that may be monitored during depo-
sition include, but are not limited to, mass flow controllers,
pressure sensors such as the pressure manometers 210, and
the temperature sensors 214. Appropriately programmed
feedback and control algorithms may be used with data from
these sensors to maintain desired process conditions. The
foregoing describes implementation of embodiments in a
single or multi-chamber semiconductor processing tool.

The film growth is smooth and conformal. Using the same
process space and temperature, ammonia gas (NH;) can be
introduced to the reaction (with or without hydrogen H,) to
form SiBN film conditions. The B—N and Si—N peaks (by
Fourier transform infrared spectroscopy (FTIR)) can be
modulated by a ratio of SiH, flow to B,H, flow. Alternatively,
the stress and refractive index (RI) can be modulated by
changing the ratio of SiH, to NH; flow. The amount of B,H
flow needed to act as the chemical catalyzer to start the
deposition reaction can be very small.

Referring now to FIG. 3, an example of a method 300
according to the present disclosure is shown. The method 300
includes setting process conditions for CVD deposition at
304. For example, a process temperature and process pressure
may be set to suitable values. At 308, flows of a first precursor,
NH; and B,H are provided at predetermined flow rates for a
predetermined period as determined at 312. For example
only, the first precursor may include SiH,, ethylene (C,H,),
N-Trimethylsilyl Acetamide (TMSA) or tetramethylsilane
(4MS). Purge may be performed at 316. The process may be
repeated one or more times at 320 for the same predetermined
period and/or for variable periods.

For example, conformal films have been deposited with
SiH, to B,H ratios ranging from 1:0.01 to 1:0.025, although
other ratios may be used. Using lower B, H, flow rates and/or
toggling off the B,H, flow during the deposition of the film
may decrease the amount of boron (as B—N) in the film and
increase the Si—N bonding peak to form a full class of films
from the boron nitride and true silicon nitride. The films are
smooth and conformal.

Multiple different films can be made like SiBN, SiB & SiN
with chemistry ratio changes with SiH ,/NH,/B,H,. Replac-
ing SiH, with carbon precursor like ethylene (C,H,), N-Tri-
methylsilyl Acetamide (TMSA) or tetramethylsilane (4MS)
allows deposition of conformal Boron Carbide films.

The high pedestal temperatures of conventional deposition
approaches (about 630° C.) constrain the hardware used since
metals such as Al cannot be used at this temperature and
chamber heating and outgassing may be problematic. With-
out adding a chemical to provide a catalytic component to the
previously purely pyrolytic reaction, the thermal CVD depo-
sition rate at 500° C. would be near zero.

Referring now to FIGS. 4 and 5, various examples of the
process are shown. In FIG. 4, FTIR analysis, refractive index
(RI) and stress are shown for various flow rates of SiH,, NH;
and B,H, in sccm. For example only, the process pressure
may be approximately 5 Torr, although other process pressure
values may be used. In FIG. 5, absorbance is shown as a
function of wavenumber for the examples of FIG. 5. These
examples employ a ratio of the silane precursor gas to the
diborane gas that is between 1:0.22 and 1:0.5

The foregoing description is merely illustrative in nature
and is in no way intended to limit the disclosure, its applica-
tion, or uses. The broad teachings of the disclosure can be
implemented in a variety of forms. Therefore, while this
disclosure includes particular examples, the true scope of the
disclosure should not be so limited since other modifications
will become apparent upon a study of the drawings, the speci-
fication, and the following claims. For purposes of clarity, the
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same reference numbers will be used in the drawings to
identify similar elements. As used herein, the phrase at least
one of A, B, and C should be construed to mean a logical (A
or B or C), using a non-exclusive logical OR. It should be
understood that one or more steps within a method may be
executed in different order (or concurrently) without altering
the principles of the present disclosure.

What is claimed is:

1. A method for depositing a conformal film in a substrate

processing system, comprising:

a) arranging a substrate on a pedestal in a processing cham-
ber;

b) heating the substrate to a temperature within a predeter-
mined temperature range, wherein the predetermined
temperature range is between 500° C. and 630° C.; and

¢) supplying a gas mixture to the processing chamber for a
predetermined period to deposit the conformal film on
the substrate, wherein the gas mixture includes a first
precursor gas, ammonia gas and diborane gas, wherein
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the first precursor gas has a deposition temperature of
approximately 650° C., wherein the gas mixture includ-
ing the diborane gas has a deposition temperature within
the predetermined temperature range, and wherein a
ratio of the first precursor gas to the diborane gas is
between 1:0.01 and 1:0.025.

2. The method of claim 1, further comprising:

d) purging the gas mixture after the predetermined period;

and

e) repeating a) to d) one or more times.

3. The method of claim 1, wherein the conformal film
includes one of a boron nitride film, a silicon nitride film, and
a boron carbide film.

4. The method of claim 1, wherein the first precursor gas
includes silane.

5. The method of claim 1, further comprising toggling the
diborane gas on and off multiple times during the predeter-
mined period.



